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Abstract—Irradiation of 1,3,5-tris(3-phenylpropenoyl)benzene (1a) yields in solution a dimer 2a by a threefold head-to-head/anti
[2r+27]cycloaddition. The stereochemistry of this [4.4.4](1,3,5)cyclophane was determined by 'H and *C NMR studies including
NOE measurements and a calculation of the AA'MM’ spin pattern of the methine protons. In contrast to the solution photo-
chemistry, which is presumably controlled by the arrangement of an excimer, the irradiation in the crystalline state leads by a
topochemical control to a dimer 3a, which contains a single four-membered ring.

© 2004 Elsevier Ltd. All rights reserved.

Cyclodimerization processes of chalcones (1,3-diphenyl-
propen-1-ones) belong to the best known photo-
reactions since the work of Stobbe in the 20’s of the
previous century.!? Numerous cyclobutanes with two
aryl and two aroyl substituents have been prepared on
this route.>?° The regio- and stereoselectivities of the
involved [2r +2r]cycloadditions depend on the reaction
conditions; the process has been studied in solution, in
the molten and in the crystalline state.

We report here on the photochemistry of 1,3,5-tris(3-
phenylpropenoyl)benzenes (1a—d), which afford a simple
preparative entry to [4.4.4](1,3,5)cyclophanes. The
starting compounds la-d can be prepared by threefold
condensation reactions of 1,3,5-triacetylbenzene with
the corresponding benzaldehydes (Scheme 1).2! This
process seems to be facile; however, insoluble polycon-
densation products are often the major products—par-
ticularly, when the electrophilicity of the aldehydes is
lowered by electron-releasing substituents. According to
NOE measurements, the cisoid conformations of
(E,E,F)-1a—d are preferred.

The parent compound 1a (A,.x = 326 nm) shows fast
photochemical E/Z isomerization reactions, which lead
to a photostationary state of four stercoisomers.
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1 R Yield[%] M.p.[C]
a’! H 51 179
b OCH; 3 208
c OC¢Hys 18 173
d OC),Hys 30 wax

Scheme 1. 1,3,5-Tris(3-phenylpropenoyl)benzenes 1a-d.?

According to the '"H NMR signals, the ratio obtained
for a 2.9x 1072 M solution of 1a in CD,Cl, irradiated
with a Hanovia—450 W middle-pressure mercury lamp
with  Pyrexfilter (4 >290nm) amounted to
(E,E,E).(E,E,Z)(E,Z,2)(Z,Z,7Z)=2:4:8:5 (Scheme 2).
Protonation of the isomeric mixture induces the reverse
reaction, in which the all-(E) configuration is so enriched
that the other isomers are below the detection limit in
the '"H NMR spectrum.
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(E,E,E)-1a

Scheme 2. Photoisomerization of 1a.

Table 1. Possible threefold photodimerizations of 1a/la’
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(Z.2,Z)-1a

Variant Involved conformers Regioselectivity Stereoselectivity of Point group of the Spin system of 4-ring
the two heads product protons

A 1a'+1a’ Head-to-head syn Cip AA'MM’

B 1a'+1a’ Head-to-tail syn Ds ArM,

C la+1a’ Head-to-tail syn Cip ABM,/A,M,*

D lat+la Head-to-head syn Cyp AA'MM’

E la+1a Head-to-head anti D; AA'MM'

#Molecular dynamics, which are fast in terms of the NMR time scale would transfer the ABM, spin pattern into an A;M,.

Irradiation of 1a in more concentrated solutions
(1.4x107'M in CH,Cl,) yields a selective dimerization
of (E,E,E)-1a. The product 2a (81%) contains three
four-membered rings in a C; arrangement. Although the
carbonyl groups and the phenyl substituents of each arm
of (E,E,E)-1a are in 2a still in trans position, there are
several possible structures for 2a. The regiochemistry of
the cyclodimerization can be head-to-head or head-to-
tail, and the orientation of the two heads can be syn or
anti. Table 1 summarizes the possible processes, where-
by extremely strained structures were omitted. Apart
from the fact that the photodimerization is a stepwise
process, the dimeric structures can be rationalized on the
basis of the all-cisoid conformation (E,E,E)-1a or the all-
transoid conformation (E,E,E)-1a’ or both together. The
'"H NMR spectrum of 2a reveals that the two head-to-
tail dimers B and C with D; and (3, symmetry,
respectively, can be excluded.

The head-to-head adduct A can be ruled out, since the
NOE measurement by irradiation into the singlet of
the protons on the central ring reveals an effect for the
protons in a-position and not in B-position to the car-
bonyl group. Thus, the dimer corresponds to the all-
cisoid conformation shown in Scheme 3 (for the enone
moieties). Finally, the two isomers, namely the achiral
structure D and the chiral structure E remain.

Both structures give calculated '"H NMR spectra, which
agree very well with the measured 'H NMR spectrum

(Fig. 1).

A differentiation between D and E could be achieved by
NOE measurements of the mixed addition product 2ab
with R=C¢Hs and R’=3,4,5(0OCH;);CsH,. A 2:1

Scheme 3. Structure D (head-to-head/syn dimer with Cs, symmetry,
2a: R =R’ =C4Hjs) and structure E (head-to-head/anti dimer with D;
symmetry, 2a: R =R’=C¢Hs).

mixture of 1a and 1b yiclded on irradiation 2b the dimer
of 1b and the mixed dimer 2ab in a ratio of about 1:4;
the dimer of 1a was only formed in traces, what proves a
somewhat higher dimerization tendency of 1b. NOE
experiments with the mixture 2ab/2b proved that irra-
diation into the singlet of the protons on the trimeth-
oxybenzene ring (6 = 6.63) caused a positive effect for
the P methine protons of the four-membered rings
(0 =4.37 and 6 = 4.49). Thus a cis arrangement of R
and R’ could be ruled out and therefore structure E was
assigned to the obtained cyclophanes 2.

Irradiation (4 > 290nm) of 1a in the crystalline state
however, afforded a dimer 3a (80%), which contains
only one four-membered ring and has the head-to-tail/
anti structure shown in Scheme 4. The structure deter-
mination was based on 1- and 2-dimensional 'H and 3C
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Figure 1. (a) Calculated® AA'MM'’ pattern for the protons on the four-membered rings d,(A) = 3.898 ppm, J3(M) = 4.468 ppm,
3J(AA)) =3J(M, M) = 9.95Hz, 3J(AM) =3J(A'M’) = 8.95Hz, |*J(AM')| = |*J(A'M)| = 0.25 Hz; (b) measured spectrum of 2a in CDCl;.
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Scheme 4. Photodimer of 1a obtained in the crystalline state. 1
12
NMR studies including NOE measurements and calcu- 13.
lations of the corresponding AA’BB’ spin patterns.
14.
Whereas dimer 3a is generated by a topochemical 15.
control,* we assume that dimer 2a (structure E) corre-
sponds to the preferred geometry of an excimer, 16
in which the m stacking is realized in a way, that the :
oxygen atoms of the carbonyl groups avoid a close 17
interaction of their electron clouds. The 'H and "C
NMR data of 2a and 3a are listed in Refs. 25, 26, 18
respectively.
19.
20.
21.
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'H NMR (CDCl) of 1la-d: 6=743-7.67 (d,
3] =15.7Hz, 3H, a-H), 7.74-7.95 (d, 3J = 15.7Hz, 3H,
B-H); *C NMR (CDCl;) of 1a—d: § = 121.1-129.8 (d, a-
C), 145.8-147.2 (d, B-C), 188.4-189.3 (s, CO).
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Software: MestRe—C 2.3a.

Irradiation of an amorphous phase of 1a did not lead to
2a.

2a: '"H NMR (CDCl): 6 = 3.90 (AA’ part of AA’'MM’,
6H, o-H), 447 (MM, 6H, B-H), 7.20-7.40 (AA'BB'C,
30H, phenyl), 7.81 (s, 3H, central benzene ring); *C NMR
(CDCl): 6 = 41.7 (B-C), 52.9 (a-C), 127.0 (o-CH, phenyl),
128.9 (m-CH, phenyl), 127.4 (p-CH, phenyl), 131.4 (CH,
central ring), 140.4, 140.6 (i-C, phenyl, and Cg, central
ring), 197.8 (CO).

3a: '"H NMR (CDCly): § = 4.94 (AA’ part of AA'BB’, 2H,
a-H, 4-ring), 5.16 (BB', 2H, B-H, 4-ring), 7.01 (m, 2H, p-H,
phenyl), 7.12 (m, 4H, m-H, phenyl), 7.30 (m, 4H, o-H,

phenyl), 7.45 (m, 12H, aromat. H of cinnamoyl), 7.52 (d,
3J = 15.8 Hz, 4H, olefin. H), 7.68 (m, 8H, aromat. H of
cinnamoyl), 7.87 (d, 3J = 15.8 Hz, 4H, olefin. H), 8.46 (d,
4] = 15.8Hz, 4H, aromat. H, benzoyl), 8.67 (t, 2H,
aromat. H, benyl); *C NMR (CDCl;): 6§ = 42.3 (B-CH,
4-ring), 51.2 (a-CH, 4-ring), 120.9 (a-CH, olefin. CH),
127.4 (p-CH, phenyl), 128.2 (o-CH, phenyl), 128.5 (m-CH,
phenyl), 128.7 (o-CH, cinnamoyl), 129.0 (m-CH, cinna-
moyl), 131.1 (p-CH, cinnamoyl), 131.4 (0o-CH, benzoyl),
131.7 (p-CH, benzoyl), 134.4 (C,, cinnamoyl), 137.4 (Cq,
phenyl), 138.4 (C,, benzoyl), 138.6 (C,, benzoyl), 146.3 (B-
CH, olefin. CH), 188.6 (CO, cinnamoyl), 197.7 (CO,
benzoyl).
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